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currently used full- and parallel-ensemble schemes. 0 1993 Academic 
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1. INTRODUCTION 

To date one of the most challenging questions in nuclear 
physics is the investigation of the properties of “nuclear 
matter” characterized in an equilibrium state by its equa- 
tion of state (EOS). Only little is known about the EOS 
of nuclear matter and, therefore, various sophisticated 
experiments have been devoted to the study of hot, dense 
nuclei. These investigations started in the advent of the 70s 
with the experiments by the streamer chamber and plastic- 
ball groups at the Bevalac using beam energies up to 
2.1 GeV/u for nuclei as heavy as 40Ca [ 11, and they are 
extended today to violent reactions ranging up to 
200 GeV/u at CERN. 

To disentangle the manifold experimental signals and 
point out sensitive observables which may provide informa- 
tion about densities, pressures, temperatures, in-medium 
modification of cross sections, etc., accurate calculations, 
incorporating the complete dynamical evolution from the 
highly non-equilibrium initial to the final pos”Jibly equi- 
librized state are neccesary. Unfortunately, at present the 
full quantum-mechanical many-body problem is not 
solvable. It is, however, possible to derive semi-classical 
transport equations that should provide good approxima- 
tions to the exact solutions. 

These transport equations resemble the form of a classical 
Boltzmann equation, extended by potential terms and 
Pauli-blocking factors in the collision integral. Several 
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groups have based their studies of heavy-ion reactions on 
this kind of kinetic equation, referring to it with different 
names: Boltzmann-Uehling-Uhlenbeck [2-Q], Vlasov- 
Uehling-Uhlenbeck [S, 61, Landau-Vlasov 173, etc. 

The main ingredients of this equation are the self-consis- 
tent mean field common to all nucleons and the residual 
NN-interaction which is modeled by the collision integral. 
In the standard algorithms used so far [2] the calculation 
of this collision term requires most of the total computing 
time. In this work we present a new powerful and fast 
method to solve the collision integral in Boltzmann-like 
kinetic equations in the nuclear physics context. 

In Section 2 we introduce our version of the kinetic 
equation, the relativistic Boltzmann-Uehling-Uhlenbeck 
(RBUU) equation. In Section 3 we explain the numerical 
methods to solve this equation, especially the different 
possibilities to tackle the collision integral. In Section 4 
we compare these various methods and demonstrate the 
superiority of our new scheme. 

2. THEORETICAL BACKGROUND 

The description of a heavy-ion collision in principle 
requires the solution of a coupled set of nonlinear equations 
of motion for quantum-mechanical field operators of 
nucleons and mesons. These equations can be written down 
in a model field-theory, but to date there is no way to 
solve them exactly. Therefore, one has to apply suitable 
approximations that lead to a transport equation for the 
nucleon phase-space density [4, 8-11 J. In this approxima- 
tion the meson-exchange interaction between the nucleons 
reduces to a mean-field potential. This potential has to be 
evaluated selfconsistently in accordance with the actual 
nucleon distribution. In its nonrelativistic form the resulting 
transport equation is given by [4] 

( a p1 a xqr; t) d 
-- 

at+mar- ar iYpl > 
f(r, pl; f)=ZcoI,, 
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x 6’3’(P, + Pz - P3 - P4) 

x Ulr, p3; t)f(r, p4; t)(l -f(r, pl; r)) 

x (1 -f(r, ~2; f)) 

-fk pl; t)f(r, p2; t)(l -Sk P3; t)) 

x (1 -f(r, p4; t))), (1) 

where f(r, p, t) is the one-body phase-space density. In its 
covariant form it reads [3] 

x6’4’(z7+z7,-z7’-zz;) 
x (f(x9 znf(x9 C)(l -m W) 
x (1 -fk nl)) 
-.m Of(x, nl)(l -fk n’)) 
x (1 -“f-(x, G)))> (2) 

with the field-strength tensor Fpy = 3,0,(x) - ~vwp(x), the 
effective mass m* = m - g,a(x) and the kinetic momentum 
Z7,, := p,, - g+,(x). Here f(x, 27) is the Lorentz-scalar 
phase-space distribution function. Possible parametriza- 
tions of the mean-field potentials V(r; t), the vector field 
w(x), and the scalar field a(x) can be found, e.g., in [4]. The 
major difference to the collision-integral known from classi- 
cal kinetic theory are the Pauli-blocking factors 1 - f(x, Z7), 
which account for the fermionic nature of the nucleons and 
prevent scattering of particles into already occupied regions 
of phase-space. Note that the collision-term is local in 
r-space. 

The extension of this transport-equation to incorporate 
different particle species or the creation of mesons is 
straightforward and can be found in, e.g., [ 123. We base our 
following discussion on the RBUU-equation (2), but the 
algorithm given below can be readily adapted to the 
non-relativistic description, too. 

Possible in-medium corrections of the N-N cross section 
dc/df2, as suggested in [4,10,13], are not important for the 
numerical schemes we will present in this work. We, there- 
fore, use the parametrization of the free cross section do/d0 
as given by Cugnon [14], which nevertheless reproduces 
the experimental rapidity distributions dN/dY in simula- 

tions of heavy-ion reactions [15, 163, and include the 
inelastic channels 

N+N+N+A; N+A+N+N; 
(3) 

N+A+N+A; A+A+A+A, 

where the A’s are propagated in the same mean-field as the 
nucleons. 

3. NUMERICAL METHODS 

The usual way to solve Eq. (2) is via the test particle 
method [ 171. Here the Lorentz-scalar phase-space distribu- 
tion function f(x, Z7) is approximated by a sum of delta 
functions, 

f(r, II; t) N f F ac3’(r - r,(t)) 6(j)(ll- II,(t)) (4) 
r=l 

centered at positions ri and momenta I&. In the following 
we will denote each of these phase-space points as a test 
particle. One should keep in mind, however, that these 
“particles” do not represent actual nucleons, but are just a 
simple tool for approximating a smooth distribution 
f(x, n). Following this interpretation, A in (4) denotes the 
number of (physical) nucleons, whereas N stands for the 
number of (unphysical) test particles per nucleon. These test 
particles move according to classical equations of motion: 

(5) 
az7k 
2 = g, $ Ft(ri) + $ m*(r,) az(m*(r,)), 

at I I 

k = 1, 2, 3. (6) 

The first term of Eq. (6) clearly resembles a Lorentz-force 
proportional to the “particle” velocity IIJl7:. 

The Vlasov part of Eq. (2) can now be readily solved: 
Dividing the time interval of interest into sufliciently 
small steps, first the mean-field potentials B and w have to 
be determined selfconsistently. Then the test particles are 
propagated according to Eqs. (5), (6), leading to new 
source-terms for the fields. Since in Eqs. (5), (6) the 
derivatives of the fields have to be computed, the densities 
have to be determined quite accurately. This, in turn, calls 
for a large number of test particles to reduce the statistical 
fluctuations. 

The straightforward, and until now generally used, way 
to tackle the collision integral is to let, in a third step, each 
test particle interact with all the others with a reduced cross 
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section u/N. Sticking to a geometrical picture, test particles 
with a distance less than ,/m experience a collision 
(s being the invariant mass of the NN pair). In the limit 
N + co, one regains the locality in configuration space 
inherent in ZCo,,, where the distribution functions f(x, ZZ) 
have to be taken at the same space-time point. 

The numerical expense is obvious, too: At each time-step 
(A . N) . (A . N - 1)/2 comparisons have to be made. We, 
therefore, expect the computing time to increase like 
U((A . N)2). This time can be somewhat reduced by an 
intelligent sorting of the test particles. Since the interaction 
range decreases like &??, it is possible to break the 
configuration space into small volumes and consider only 
collisions among particles in the same volume-element and 
in the small boundary region between two adjacent boxes. 
This would lead to a scaling like 0(A . N’). This computa- 
tion scheme, where all test particles can mutually interact, is 
called the “full-ensemble” method. 

In contrast, the “parallel-ensemble” method allows only 
collisions among particles belonging to the same ensemble 
which consists of A test particles; we therefore encounter the 
situation of N independent cascade runs, coupled, however, 
via the common mean-field potential [2]. The computa- 
tional effort is of the order @(A’. N). Since typically 
A x 200, N x 500, the parallel-ensemble method is numeri- 
cally faster than the full-ensemble method. 

Unfortunately, the interaction range in the parallel- 
ensemble method will be ,/& regardless of the number of 
test particles. Therefore one cannot expect that the solutions 
converge in the limit N + co, dt + 0, to the exact solutions 
of Eq. (2), since the locality of the collision term is evidently 
not attained. Nevertheless, it was. found by Welke et al. 
[ 183, that the results of full-ensemble and parallel-ensemble 
calculations yield comparable results for heavy-ion 
reactions. 

We now propose a new method to solve ZCol,, already 
successfully applied in other fields of physics [19], which 
scales as O(A . N) and can be shown to converge to the exact 
solution of the Boltzmann equation. We call this scheme in 
the following the “local-ensemble” method. 

We start with the following assumption: Let the phase- 
space density f(x, ZZ) be a slowly varying function (on an 
appropriately small chosen scale) of the four-vector x. This 
assumption has already been made by discretizing the 
Vlasov-equation in time and computing the fields only on 
discrete space-time grid-points. At each time-step we can 
therefore approximate f(r, ZZ) by 

7(r~ n, :=I sif,(n), 
I 

ai= 1 if r E volume-element i 
ai=o, otherwise. 

(7) 

At each grid point, one thus has to solve a space-indepen- 

dent Boltzmann equation. The probability for one pair of 
test particles to undergo a collision during the time interval1 
At in the volume element A3x is then given by 

w= ds, ml, m2) At 
N UreI d’x’ 

Here c denotes the (total) cross section, s is the invariant 
mass of the baryon pair, and u,,, is the relative velocity of the 
scattering particles 1 and 2. The latter is given by 

with 1(x, y, z) = (x - y - z)’ - 4yz. 
Out of the n(n - 1)/2 possible pairs (n being the number 

of test particles in the cell A3x) we choose at random [n/2] 
collision pairs. We therefore have to replace the probability 
Wby W’, 

w’ .= wo- 1)/2 
[n/21 

(10) 

in order to obtain the correct total transition rate in the cell. 
In the limit A3x + 0, At + 0, N + co, the solutions obtained 
by this method will converge to the exact solutions of the 
Boltzmann equation [20, 211. Furthermore, this prescrip- 
tion is evidently covariant. Since we are dealing with trans- 
ition rates and do not employ the geometrical interpretation 
of the full-ensemble or the parallel-ensemble methods 
described above, no problems connected with the time- 
ordering of the collision processes occur. 

4. RESULTS 

We now compare the results of calculations using the 
three different alogorithms for the treatment of the collision 

t (fm/c) 
FIG. 1. Transition rate in the central-overlap region for the reaction 

93Nb + 93Nb at 1 GeV/u: solid, local-; dashed, full-; dotted, parallel- 
ensemble algorithm. 
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FIG. 2. Average number of collisions per particle in the central- FIG. 4. Transverse pressure in the central overlap-region for the 
overlap region for the reaction 93Nb + 93Nb at 1 GeV/u: solid, local-; reaction 93Nb+ 93Nb at 1 GeV/u: solid, local-; dashed, full-; dotted, 
dashed, full-; dotted, parallel-ensemble algorithm. parallel-ensemble algorithm. 

term discussed above. We chose the system 93Nb + 93Nb 
at 1 GeV/u, impact parameter b = 2.3 fm, with 1000 test 
particles per nucleon as a typical example for the kind of 
reactions currently investigated. 

The first quantity of interest is the number of collisions 
during one time-step in a central volume element of the 
overlap region of the two nuclei, divided by the time-step 
size, i.e., the transition rate (cf. Fig. 1). As can be seen, full 
ensemble and local ensemble methods give about the same 
results, whereas the collision numbers are somewhat larger 
for the parallel ensemble method. In Fig. 2 we present the 
average number of collisions per particle as a function of 
time. Again, the parallel ensemble method gives by about 
15-20 % larger numbers than the other two methods. 

Whether the established differences in the collision 
history are important can only be judged by comparing the 
physical observables of the system. Even if there are only 
small deviations in the collision numbers, the resulting 

3.0 

2.5 

0.5 

0.0 I I I 
5 10 15 20 25 

tb/cl 
FIG. 3. Density in the central-overlap region for the reaction 

93Nb + 93Nb at 1 GeV/u: solid, local-; dashed, full-; dotted, parallel- 
ensemble algorithm. 

changes in the dynamical evolution of the system may be 
quite large, since distinct regions in phase-space are tested. 
Therefore we investigated the density (Fig. 3) and the trans- 
verse pressure (Fig. 4) in the central overlap region (see 
[22,23] for details). Since the transverse pressure P, is 
dynamically created during the reaction, one might expect it 
to be sensitive to the collision prescription employed. This, 
however, turns out to be not the case as can be seen in 
Fig. 4. The results of all three algorithms agree perfectly for 
the density as well as for the transverse pressure, proving 
that the parallel ensemble and local ensemble algorithms 
yield good approximations to the “exact” solution. 

The quantities just discussed are not directly experimen- 
tally observable. We, therefore, want to close our com- 
parisons with two quantities that have proven to be quite 
important and are easily accessible in experiment: The 
“stopping power” (i.e., the dN/dY distribution which gives 
the number of particles per unit rapidity bin) [24] and the 

FIG. 5. Stopping power (&/dY) for the reaction 93Nb + 93Nb at 
1 GeV/u: solid, local-; dashed, full-; dotted, parallel-ensemble algorithm. 
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FIG. 6. Transverse flow for the reaction g3Nb + g3Nb at 1 GeV/u: 
solid, local-; dashed, full-; dotted, parallel-ensemble algorithm. 

transverse flow (i.e., p,/A, the transverse momentum per 
nucleon) [25]. The first is commonly used to gain informa- 
tion about possible modifications of the N-N cross section, 
whereas the latter is believed to test the influence of the 
mean field. Again, all three methods yield the same results 
(cf. Fig. 5 and Fig. 6), assuring that the overall dynamical 
evolution is the same for all three cases. 

The most striking differences among the three methods 
can be found in the amount of computing time needed. To 
demonstrate this more clearly, we performed pure cascade 
calculations without Pauli-blocking. In Fig. 7 we show the 
amount of computing time needed for one time-step for the 
two different systems “%a + 40Ca and 93Nb + 93Nb as a 
function of N (i.e., the number of test particles/A). The 
linear dependence on N for the parallel and local ensemble 
methods can be seen quite clearly, whereas the amount of 
computing time increases quadratically for the full ensemble 
method. For moderate test-particle numbers, however, the 
parallel and full ensemble methods need about the same 
amount of time. Nevertheless, neither approach can com- 
pete with the local ensemble method, which is (for 2500 test 

1 ' I p I - I 
0 500 1000 1500 2000 2500 

number of tp/A 

FIG. 7. Computing time as a function of the number of test particles/A 
for Nb + Nb and Ca + Ca: solid, local-; dashed, full-; dotted, parallel- 
ensemble algorithm. 

50 100 150 200 

A 
FIG. 8. Computing time as a function of the projectile mass: solid, 

local-; dashed, full-; dotted, parallel-ensemble algorithm. 

particles/A) a factor of 10 (compared to the full ensemble) 
or six (compared to the parallel ensemble) times faster, 
respectively. 

The dependence on the projectile mass (we investigated 
only symmetric systems) is shown in Fig. 8 for 1000 test 
particles/A. We find our initial statement confirmed: The 
time needed by local and full ensemble increases linearly, 
whereas for the parallel ensemble it increases quadratically. 
Since future experiments will definitely aim at high mass 
numbers, this again demonstrates the superiority of the 
local ensemble method. 

5. SUMMARY 

We have presented in this work a new method-called the 
local ensemble method-to solve the collision integrals in 
BUU-type simulations of heavy-ion reactions. All three 
methods we compared-the parallel ensemble, the full 
ensemble, and the local ensembleaelivered the same 
results for all the physical observables investigated. The 
local ensemble method, however, has the following 
advantages compared to its predecessors: 

l Its solutions will converge (in the limit N+ 00, 
A3x + 0, At + 0) to the exact solutions of the Boltzmann 
equation. In contrast, the solutions of the parallel ensemble 
method can only be approximations to the exact solutions, 
since it clearly violates the locality of the collision integral. 

l The local ensemble method is fully covariant and does 
not exhibit any problems of time-ordering. 

l Whereas the full and parallel ensemble methods show 
a computing time behaviour like O(A . N2) and @(A* . N), 
respectively, the time needed by the local ensemble method 
increases only linearly (i.e., like O(A .N)). As we have 
shown, the savings in computing time may be tremendous. 
Factors of 5-10 can be easily reached. Furthermore, since 
each cell in configuration space can be treated completely 
independently from all the others, modern computing 

581/106/2-14 
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techniques like massive parallelization and vectorization 
can be quite easily adopted, improving the situation even 
more. 

We hope that the local ensemble method will lead to a 
“quantum leap” in the theoretical investigations of heavy- 
ion reactions. It is quite simple to implement and possible 
extensions are straightforward (e.g., introduction of other 
particle species, creation of mesons). 
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